Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Am Chem Soc ; 145(28): 15137-15151, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37409504

RESUMO

The fundamental processes of nucleation and crystallization are widely observed in systems relevant to material synthesis and biomineralization; yet most often, their mechanism remains unclear. In this study, we unravel the discrete stages of nucleation and crystallization of Fe3(PO4)2·8H2O (vivianite). We experimentally monitored the formation and transformation from ions to solid products by employing correlated, time-resolved in situ and ex situ approaches. We show that vivianite crystallization occurs in distinct stages via a transient amorphous precursor phase. The metastable amorphous ferrous phosphate (AFEP) intermediate could be isolated and stabilized. We resolved the differences in bonding environments, structure, and symmetric changes of the Fe site during the transformation of AFEP to crystalline vivianite through synchrotron X-ray absorption spectroscopy at the Fe K-edge. This intermediate AFEP phase has a lower water content and less distorted local symmetry, compared to the crystalline end product vivianite. Our combined results indicate that a nonclassical, hydration-induced nucleation and transformation driven by the incorporation and rearrangement of water molecules and ions (Fe2+ and PO43-) within the AFEP is the dominating mechanism of vivianite formation at moderately high to low vivianite supersaturations (saturation index ≤ 10.19). We offer fundamental insights into the aqueous, amorphous-to-crystalline transformations in the Fe2+-PO4 system and highlight the different attributes of the AFEP, compared to its crystalline counterpart.

3.
Adv Sci (Weinh) ; 10(25): e2301904, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37439408

RESUMO

Liquid-Phase Transmission Electron Microscopy (LP-TEM) enables in situ observations of the dynamic behavior of materials in liquids at high spatial and temporal resolution. During LP-TEM, incident electrons decompose water molecules into highly reactive species. Consequently, the chemistry of the irradiated aqueous solution is strongly altered, impacting the reactions to be observed. However, the short lifetime of these reactive species prevent their direct study. Here, the morphological changes of goethite during its dissolution are used as a marker system to evaluate the influence of radiation on the changes in solution chemistry. At low electron flux density, the morphological changes are equivalent to those observed under bulk acidic conditions, but the rate of dissolution is higher. On the contrary, at higher electron fluxes, the morphological evolution does not correspond to a unique acidic dissolution process. Combined with kinetic simulations of the steady state concentrations of generated reactive species in the aqueous medium, the results provide a unique insight into the redox and acidity interplay during radiation induced chemical changes in LP-TEM. The results not only reveal beam-induced radiation chemistry via a nanoparticle indicator, but also open up new perspectives in the study of the dissolution process in industrial or natural settings.

4.
J Phys Chem Lett ; 14(20): 4644-4651, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37167107

RESUMO

Advanced in situ techniques based on electrons and X-rays are increasingly used to gain insights into fundamental processes in liquids. However, probing liquid samples with ionizing radiation changes the solution chemistry under observation. In this work, we show that a radiation-induced decrease in pH does not necessarily correlate to an increase in acidity of aqueous solutions. Thus, pH does not capture the acidity under irradiation. Using kinetic modeling of radiation chemistry, we introduce alternative measures of acidity (radiolytic acidity π* and radiolytic ion product KW*), that account for radiation-induced alterations of both H+ and OH- concentration. Moreover, we demonstrate that adding pH-neutral solutes such as LiCl, LiBr, or LiNO3 can trigger a significant change in π*. This provides a huge parameter space to tailor the acidity for in situ experiments involving ionizing radiation, as present in synchrotron facilities or during liquid-phase electron microscopy.

5.
Langmuir ; 38(25): 7678-7688, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35708331

RESUMO

Saponite is a clay mineral of the smectite group that finds applications in the chemical industry as a catalyst or catalyst precursor as well as in nanocomposites used for structural or catalytic applications. Saponite of controlled composition, crystallinity, particle size, and morphology would be highly beneficial to industry; however, such materials are not found in a sufficiently pure form in nature. Synthetic methods to produce saponite with specific properties are currently lacking as the understanding of the mechanisms controlling its formation, crystalline properties and particle morphology, is limited. Understanding the saponite formation mechanism is crucial for the development of a highly tuned and controlled synthesis leading to materials with specific properties. Here, we report a new chemical reaction mechanism explaining the nucleation and kinetics of saponite growth at different pHs, at 95-100 °C, and under the influence of pH-modifying additives explored via a combination of X-ray scattering methods and infrared spectroscopy. Our results show that the main factor affecting the nucleation and growth kinetics of saponite is the pH, which has a particularly significant impact on the rate of initial nucleation. Non-uniform reactivity of the aluminosilicate gel also significantly affects saponite growth kinetics and causes a change in the rate-determining step as seen in graphical abstract. The most crystalline saponite is obtained when the nucleation is suppressed by a low initial pH (<7), but the reaction is performed at a higher pH of about 9. The stacking of the saponite sheets can be further improved by a separate postsynthesis treatment with an alkali (NaOH) solution. A simple, ambient pressure method for synthesizing a highly crystalline saponite is proposed that could be easily upscaled for industrial purposes.

6.
Sci Adv ; 6(27): eaaz3125, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32923582

RESUMO

Bacterial biomineralization is a widespread process that affects cycling of metals in the environment. Functionalized bacterial cell surfaces and exopolymers are thought to initiate mineral formation, however, direct evidences are hampered by technical challenges. Here, we present a breakthrough in the use of liquid-cell scanning transmission electron microscopy to observe mineral growth on bacteria and the exopolymers they secrete. Two Escherichia coli mutants producing distinct exopolymers are investigated. We use the incident electron beam to provoke and observe the precipitation of Mn-bearing minerals. Differences in the morphology and distribution of Mn precipitates on the two strains reflect differences in nucleation site density and accessibility. Direct observation under liquid conditions highlights the critical role of bacterial cell surface charges and exopolymer types in metal mineralization. This has strong environmental implications because biofilms structured by exopolymers are widespread in nature and constitute the main form of microbial life on Earth.


Assuntos
Biofilmes , Matriz Extracelular de Substâncias Poliméricas , Bactérias/metabolismo , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Metais , Minerais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...